你必须要知道数据在运营中的哪些运用
理解了这两个词,最终你会发现,所谓数据分析,无非就是界定清楚了你要评估的度量有哪些,然后需要知道你可能有哪些维度去看待这些度量,偶尔可能还需要在不同维度和度量间交叉做一下分析和比对,最后产出结论,把结果用图表等方式呈现出来就好了。 所以,回归到这个例子,我们如果要结合具体的产品形态,对于某机构的用户生态和使用习惯有更加深入的了解,我们或许可以先界定清楚,我们需要去评估的度量有哪些?这个度量需要结合你的核心产品功能来想,因为某机构网站上目前主要的产品功能就是报名学习,以用户可能会在这个网站上发生的核心行为为主线来看的话,我们要重点关注的是以下三类行为:访问、报名、上课。于是,围绕着上述 3 个行为,我们要重点关注的度量就可能包括了: 网站访问数,注册数,报名课程数,实际上课用户数,视频停留时间,单视频重复播放数。 同时,对于以上的部分度量,我们应该有一个自己预设的合理区间(这个区间需要基于你自己对于行业和用户的了解来进行判断得出,或者是通过持续探索得出),比如说,单课程的实际上课用户数为该课程的报名用户数的 20%-50%之间我们可能认为是比较合理的,那么如果该数值高于或低于了这个区间,均可视为异常。 然后,接下来的一步,就是我们需要再来逐次围绕着每一个度量来去看看,我们可以有哪些维度去看待它、分析它、评估它。 比如,拿最简单的课程报名数来举例,我们要评估这个数据的维度可能包括了日期、时间、地区、新老用户等,如果要把这个评估做到极致,我们可能需要从每一个维度依次去评估报名数这个指标的变化,从中发现一些线索或结论。 基本上,这种评估的出口有二: 1)判断数据是否有一些异常需要注意的情况(如果出现异常数据,一定要分析原因); 2)是为了给自己的运营工作找到一些方向性的指导,比如说,我现在要是想要发起一个要把站内课程月报名数提升 10 倍,我是否可以从用户行为和习惯之间去得到一些具体的启发?且,很多时候,这两个目的是可能会合一的。 好比,假如我们看到过去 30 天里的报名数据是这样的: 那么我们是否就需要去看一下,在报名数开始激增的那几天里,到底发生了什么?是因为我们有意识的做了一些推广和活动?还是因为上线了新的课程?还是因为发生了什么别的事情? 而,假如你发现,如果相应数据的激增是因为课程信息偶然间被人分享到了某个社区内(比如知乎)并引发了一轮小小的传播,那么接下来你如果想要从运营端做一些事来提升课程报名数这个指标的话,你是不是就可以有意识的在知乎去做一些事?比如认真分析一下之前的内容为什么能在知乎引发传播,然后把传播点提炼出来,用更适于知乎的形式去进行一轮包装,并想尽办法在知乎再进行新一轮的扩散。 事实上,我个人就曾经亲历过类似的案例,2009年 前后,当时我所供职的一家互联网公司,就曾经因为发现我们的某个产品被用户在人人网分享后带来了过万的 UV,从这一线索入手,我们开始深耕人人网,最后在短时间内给该产品带来了数十倍的数据增长。 另外,这种数据分析的另一个维度,就是依照你的常识对用户进行划分,再去分别看数据 + 结合用户访谈,了解不同类型的用户,在具体行为习惯上可能会有哪些不同。 比如,因为某机构主要解决的需求是学习,还没有工作经验的大学生和工作了 2年 以上的互联网人,理论上学习习惯肯定是不同的,此时我们就可以分别从数据上去观察,这两类人的访问、报名、听课、课后作业包括学习产出和效果等等一系列行为上存在多大区分和差异。 当这些问题界定清楚后,事实上你是可以根据用户类型的不同,分别推送给他们不同的服务和引导他们完成不同的用户行为的(比如已工作的上来先做个任务,还是大学生的则先去听两堂入门课),这样精细化的运营可以大大助推你的用户留存和活跃。 最终,假如你手边的数据足够充分,且这种从度量&维度切入的分析做到极致,理论上你会对于整体站内用户的构成、行为习惯和当前产品的主要问题做到了然于胸,也会对于站内的整体用户生态更加具有掌控力。 这里再补充两个小说明: 第一,理论上,假如作为一个运营负责人,我们应该对于每一个关键性的用户行为都定期(比如每三个月或每半年)进行全方位多维度的分析,做到对于每一个关键用户行为的用户习惯和当前产品指标中的问题点了然于胸的。 但,事实上是绝大部分运营都可能看不到那么全的数据,这里面原因有很多,比如数据后台不完善,没有数据权限等等,这时候我们该怎么办? 我的建议是: 不管看不看得到,你都要让自己具备这样的分析问题和解决问题的意识 + 能力; 如果某个数据的缺失已经严重影响到了你的工作开展,一定要向老板持续沟通持续要,直到拿到为止; 如果只能拿到局部数据,那就先对局部数据进行一些分析和推断,再带着你的一些假设去工作,以工作成果来验证你的假设。再随着业务的发展和要求不断去完善数据需求。 第二,对很多产品来说,往往都是 20%的重点用户,给该产品带来了 80%的价值。 所以,无论是分析数据还是具体开展运营工作,你也要培养起来这样一个意识:要重点去关注对你最有价值的那部分用户,把你至少 50%左右的精力用于去关注他们。 比如说,你站内更加活跃的用户,更愿意贡献内容的用户,更愿意参与用户服务和管理的用户,等等。 (六)在数据中发现和挖掘隐藏的线索 承接着上面讲到的例子背景,接下来我们可以把最后一个点也一并讲了—— 数据当中可能隐藏着一些潜在的能让你把一件事情变得更好的线索和彩蛋,有待于你去发现和挖掘。 关于这件事,基础的逻辑可能是这样的—— 第一,你先找出你的产品中,当前可能存在问题的某个关键度量(或称指标)。 第二,对于这个度量进行纵览,从它的构成去看:是否所有用户或我们的所有服务在这个度量上的表现都很差?还是说有一部分用户或服务在该度量上的表现是会显著好于其他用户或服务的。 第三,你可以对于那些表现显著要好的用户和服务在不同维度上进行进一步挖掘,寻找其背后的一些共性用户行为或特征,然后再把这些特征放大到极致。 比如说,某个月某机构站内课程报名量表现不佳,明显走低,按照上面所说到的逻辑,我们可以依次来进行如下思考和判定—— 把当月的所有课程的报名数都列出来,然后去观察,是否所有课程的报名量都很差,还是有一些课程的报名会好一些。最终我们发现,其中存在 6 堂课程,它们的报名数普遍高于其他课程 2 倍以上。 (编辑:云计算网_泰州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |