加入收藏 | 设为首页 | 会员中心 | 我要投稿 云计算网_泰州站长网 (http://www.0523zz.com/)- 视觉智能、AI应用、CDN、行业物联网、智能数字人!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

更快更小更高效的模型优化技术MorphNet

发布时间:2021-05-04 09:16:28 所属栏目:外闻 来源:互联网
导读:神经网络来完成特定任务?这件事并没有想象中那么简单。 深度神经网络(DNN)是块好砖,不过想要搬动它,需要耗费的计算资源和时间成本可能非常昂贵。 现在,Google AI放出了MorphNet。他们用流行的图像分类神经网络Inception V2对其进行测试之后发现,在不

神经网络来完成特定任务?这件事并没有想象中那么简单。

深度神经网络(DNN)是块好砖,不过想要搬动它,需要耗费的计算资源和时间成本可能非常昂贵。

现在,Google AI放出了MorphNet。他们用流行的图像分类神经网络Inception V2对其进行测试之后发现,在不牺牲精度的情况下,神经网络变得更快更小,算力消耗还减少了!

MorphNet是什么

MorphNet是一种神经网络模型优化( refinement)技术,走的是利用现有架构,针对特定任务优化的路线。

也就是说这是一个迁移学习问题。迁移学习的难点在于找出不变量,模型需要处理许多与此前训练的任务目标相近,但又不完全一样的任务,这会使模型性能大打折扣甚至崩溃。

而MorphNet的成功之处在于,只要将针对类似问题构建的神经网络作为输入,就能为新任务创造更小、更快、更合身的新架构。et通过循环收缩和扩展两个阶段来优化神经网络。

收缩阶段

在收缩阶段,MorphNet会识别出低效神经元,并运用稀疏正则化器来修剪它们。

需要说明的是MorphNet会在考虑目标资源的情况下来计算一个神经元的损失,因此在训练过程之中,优化器能够意识到资源损失,从而认识到哪些神经元是高效的,哪些又是可以被移除的。

有些不明白?那么来看看下面这个例子,看MorphNet是如何计算神经网络的计算成本(如FLOPs,即每秒浮点运算次数)的:

假设一个表示为矩阵乘法的神经网络层,该层具有 2 个输入(Xn),6 个权重(a, b, …, f)以及 3 个输出(Yn;神经元)。也就是说评估这一层需要 6 次乘法。et将乘法数视作输入数和输出数的乘积。在左侧的示例当中,虽然有两个权重为0,进行评估时仍然需要执行所有的乘法。但中间的示例显示了结构的稀疏性,MorphNet能够识别它的输出数为 2,并且该层的乘法数从 6 减少到了4。按照这个想法,MorphNet可以确定网络中每一个神经元的增量成本,以产生右侧这样更为有效的模型。

扩展阶段

在扩展阶段,MorphNet使用宽度乘数来均匀地扩展所有层的大小。

举个例子,如果扩展50%,那么对于低效层来说,神经元从 100 个收缩到 10 个之后,只会重新扩展到15个;而对于重要层来说,神经元只会从 100 个收缩到 80 个,重新扩展后则可能达到 120 个,并且获得更多可支配的资源。

也就是说,MorphNet的最终效果是将计算资源从网络中法是使用宽度乘数,通过均匀缩小每个卷积的输出数量来权衡精度和算力消耗(红色)。

MorphNet方法则直接以算力消耗为目标,在收缩模型时生成更好的权衡曲线(蓝色)。

在同等精度之下,MorphNet方法将算力消耗降低了11%到15%。

在对Inception V2的优化上MorphNet表现出色,对于其他的网络模型,MorphNet也同样好用。

(编辑:云计算网_泰州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读