加入收藏 | 设为首页 | 会员中心 | 我要投稿 云计算网_泰州站长网 (http://www.0523zz.com/)- 视觉智能、AI应用、CDN、行业物联网、智能数字人!
当前位置: 首页 > 站长资讯 > 动态 > 正文

机器学习科研

发布时间:2021-04-28 12:11:03 所属栏目:动态 来源:互联网
导读:有得到学长真传的我,开始了我科研的第一阶段,从大四到硕士的第二年,期间一直自己摸索,不断地问自己 科研是什么。 和课程作业不同,学术研究没有具体的问题,具体的方法,具体的答案。文渊的离开让我一下子不知道该怎么做,当时的我的想法很简单,快点寻

有得到学长真传的我,开始了我科研的第一阶段,从大四到硕士的第二年,期间一直自己摸索,不断地问自己 “科研是什么”。

和课程作业不同,学术研究没有具体的问题,具体的方法,具体的答案。文渊的离开让我一下子不知道该怎么做,当时的我的想法很简单,快点寻找一个具体的方向,完成一篇论文。因为ACM班的机会暑假在MSRA的短暂实习,虽然学会了很多东西,但并没有给我答案。MSRA回来之后,在实验室薛老师的建议下,我选择了一个现在看来正确而又错误的方向 -- 深度学习。那是AlexNet出现之前两年,深度学习的主流热点是非监督学习和限制玻尔兹曼机。没有导师的指导,没有工具,当时我靠着实验室的两块显卡和自己写的CUDA代码开始了死磕深度学习的两年半。实验室的学长问我,你准备要干啥,我说:“我要用卷积RBM去提升ImageNet的分类效率。” 这一个回答开启了图书馆和实验室的无数个日日夜夜,为了给实验室的老机器多带一块高功率的显卡,我们打开了一台机器的机箱,在外面多塞了一个外接电源。我的生活就持续在调参的循环中:可视化权重的图片, 看上去那么有点像人脸,但是精度却总是提不上来,再来一遍。从一开始hack显卡代码的兴奋,到一年之后的焦虑,再到时不时在树下踱步想如何加旋转不变的模型的尝试,在这个方向上,我花费了本科四年级到硕士一年半的所有时间,直到最后还是一无所获。现在看来,当时的我犯了一个非常明显的错误 -- 常见的科学研究要么是问题驱动,比如“如何解决ImageNet分类问题”;要么是方法驱动,如 “RBM可以用来干什么”。当时的我同时锁死了要解决的问题和用来解决问题的方案,成功的可能性自然不高。如果我在多看一看当时整个领域的各种思路,比如Lecun在很早的时候就已经做end to end,或许结局会不那么一样吧。

当然没有如果,赌上了两年半的时间的我留下的只是何时能够发表论文的紧张心情。焦虑的我开始打算换一个方向,因为RBM当时有一个比较经典的文章应用在了推荐系统上,我开始接触推荐系统和kddcup。比较幸运的是,这一次我并没有把RBM作为唯一的一个方法,而是更加广泛地去看了推荐系统中的矩阵分解类的算法,并且在实验室搭建了一个比较泛用的矩阵分解系统。推荐系统方向的耕耘逐渐有了收获,我们在两年KDDCup11中获得了不错的成绩。KDD12在北京,放弃了一个过年的时间,我完成了第一篇关于基于特征的分布式矩阵分解论文,并且非常兴奋地投到了KDD。四月底的时候,我们收到了KDD的提前拒搞通知 -- 论文连第一轮评审都没有过。收到拒搞通知时候的我的心情无比沮丧,因为这是第一篇自己大部分独立推动完成的文章。转折在五月,KDDCup12 封榜,我们拿到了第一个track的冠军,我依然还记得拿到KDDCup12冠军的那一个瞬间,我在状态里面中二地打了excalibur,仿佛硕士期间的所有阴霾一扫而尽。那时候的我依然还不完全知道科研是什么,但是隐隐之中觉得似乎可以继续试试。

第零年: 可以做什么

我对于科研看法的第一个转折,在于我硕士临近毕业的时候。李航老师来到我们实验室给了关于机器学习和信息检索的报告,并且和我们座谈。在报告的过程中,我异常兴奋,甚至时不时地想要跳起来,因为发现我似乎已经知道如何可以解决这么多有趣问题的方法,但是之前却从来没有想过自己可以做这些问题。联系了李航老师之后,在同一年的夏天,我有幸到香港跟随李航和杨强老师实习。实验室的不少学长们曾经去香港和杨强老师工作,他们回来之后都仿佛开了光似地在科研上面突飞猛进。去香港之后,我开始明白其中的原因 -- 研究视野。经过几年的磨练,那时候的我或许已经知道如何去解决一个已有的问题,但是却缺乏其他一些必要的技能 -- 如何选择一个新颖的研究问题,如何在结果不尽人意的时候转变方向寻找新的突破点,如何知道整个领域的问题之间的关系等等。“你香港回来以后升级了嘛。” -- 来自某大侠的评论。这也许是对于我三个月香

(编辑:云计算网_泰州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读