加入收藏 | 设为首页 | 会员中心 | 我要投稿 云计算网_泰州站长网 (http://www.0523zz.com/)- 视觉智能、AI应用、CDN、行业物联网、智能数字人!
当前位置: 首页 > 运营中心 > 网站设计 > 教程 > 正文

计算机程序的思维逻辑 (45) - 神奇的堆

发布时间:2016-10-28 22:09:32 所属栏目:教程 来源:站长网
导读:副标题#e# 前面几节介绍了Java中的基本容器类,每个容器类背后都有一种数据结构,ArrayList是动态数组,LinkedList是链表,HashMap/HashSet是哈希表,TreeMap/TreeSet是红黑树,本节介绍另一种数据结构 - 堆。 引入堆 之前我们提到过堆,那里,堆指的是内存
副标题[/!--empirenews.page--]

前面几节介绍了Java中的基本容器类,每个容器类背后都有一种数据结构,ArrayList是动态数组,LinkedList是链表,HashMap/HashSet是哈希表,TreeMap/TreeSet是红黑树,本节介绍另一种数据结构 - 堆。

引入堆

之前我们提到过堆,那里,堆指的是内存中的区域,保存动态分配的对象,与栈相对应。这里的堆是一种数据结构,与内存区域和分配无关。

堆是什么结构呢?这个我们待会再细看。我们先来说明,堆有什么用?为什么要介绍它?

堆可以非常高效方便的解决很多问题,比如说:

  • 优先级队列,我们之前介绍的队列实现类LinkedList是按添加顺序排队的,但现实中,经常需要按优先级来,每次都应该处理当前队列中优先级最高的,高优先级的,即使来得晚,也应该被优先处理。
  • 求前K个最大的元素,元素个数不确定,,数据量可能很大,甚至源源不断到来,但需要知道到目前为止的最大的前K个元素。这个问题的变体有:求前K个最小的元素,求第K个最大的,求第K个最小的。
  • 求中值元素,中值不是平均值,而是排序后中间那个元素的值,同样,数据量可能很大,甚至源源不断到来。

堆还可以实现排序,称之为堆排序,不过有比它更好的排序算法,所以,我们就不介绍其在排序中的应用了。

Java容器中有一个类PriorityQueue,就表示优先级队列,它实现了堆,下节我们会详细介绍。关于后面两个问题,它们是如何使用堆高效解决的,我们会在接下来的几节中用代码实现并详细解释。

说了这么多好处,堆到底是什么呢?

堆的概念

完全二叉树

堆首先是一颗二叉树,但它是完全二叉树。什么是完全二叉树呢?我们先来看另一个相似的概念,满二叉树。

满二叉树是指,除了最后一层外,每个节点都有两个孩子,而最后一层都是叶子节点,都没有孩子。比如,下图两个二叉树都是满二叉树。

计算机程序的思维逻辑 (45) - 神奇的堆
满二叉树一定是完全二叉树,但完全二叉树不要求最后一层是满的,但如果不满,则要求所有节点必须集中在最左边,从左到右是连续的,中间不能有空的。比如说,下面几个二叉树都是完全二叉树:

计算机程序的思维逻辑 (45) - 神奇的堆
而下面的这几个则都不是完全二叉树:

计算机程序的思维逻辑 (45) - 神奇的堆

编号与数组存储

在完全二叉树中,可以给每个节点一个编号,编号从1开始连续递增,从上到下,从左到右,如下图所示:

计算机程序的思维逻辑 (45) - 神奇的堆
完全二叉树有一个重要的特点,给定任意一个节点,可以根据其编号直接快速计算出其父节点和孩子节点编号,如果编号为i,则父节点编号即为i/2,左孩子编号即为2*i,右孩子编号即为2*i+1。比如,对于5号节点,父节点为5/2即2,左孩子为2*5即10,右孩子为2*5+1即11。

这个特点为什么重要呢?它使得逻辑概念上的二叉树可以方便的存储到数组中,数组中的元素索引就对应节点的编号,树中的父子关系通过其索引关系隐含维持,不需要单独保持。比如说,上图中的逻辑二叉树,保存到数组中,其结构为:

计算机程序的思维逻辑 (45) - 神奇的堆

父子关系是隐含的,比如对于第5个元素13,其父节点就是第2个元素15,左孩子就是第10个元素7,右孩子就是第11个元素4。

这种存储二叉树的方法与之前介绍的TreeMap是不一样的,在TreeMap中,有一个单独的内部类Entry,Entry有三个引用,分别指向父节点、左孩子、右孩子。

使用数组存储,优点是很明显的,节省空间,访问效率高。

最大堆/最小堆

堆逻辑概念上是一颗完全二叉树,而物理存储上使用数组,除了这两点,堆还有一定的顺序要求。

之前介绍过排序二叉树,排序二叉树是完全有序的,每个节点都有确定的前驱和后继,而且不能有重复元素。

与排序二叉树不同,在堆中,可以有重复元素,元素间不是完全有序的,但对于父子节点之间,有一定的顺序要求,根据顺序分为两种堆,一种是最大堆,另一种是最小堆。

最大堆是指,每个节点都不大于其父节点。这样,对每个父节点,一定不小于其所有孩子节点,而根节点就是所有节点中最大的,对每个子树,子树的根也是子树所有节点中最大的。

最小堆与最大堆正好相反,每个节点都不小于其父节点。这样,对每个父节点,一定不大于其所有孩子节点,而根节点就是所有节点中最小的,对每个子树,子树的根也是子树所有节点中最小的。

我们看下图示:

计算机程序的思维逻辑 (45) - 神奇的堆
堆概念总结

总结来说,逻辑概念上,堆是完全二叉树,父子节点间有特定顺序,分为最大堆和最小堆,最大堆根是最大的,最小堆根是最小的,堆使用数组进行物理存储。

这个数据结构为什么就可以高效的解决之前我们说的问题呢?在回答之前,我们需要先看下,如何在堆上进行数据的基本操作,在操作过程中,如何保持堆的属性不变。

堆的算法

下面,我们来看下,如何在堆上进行数据的基本操作。最大堆和最小堆的算法是类似的,我们以最小堆来说明。先来看如何添加元素。

添加元素

如果堆为空,则直接添加一个根就行了。我们假定已经有一个堆了,要在其中添加元素。基本步骤为:

  1. 添加元素到最后位置。
  2. 与父节点比较,如果大于等于父节点,则满足堆的性质,结束,否则与父节点进行交换,然后再与父节点比较和交换,直到父节点为空或者大于等于父节点。

我们来看个例子。下面是初始结构:

计算机程序的思维逻辑 (45) - 神奇的堆
添加元素3,第一步后,结构变为:

计算机程序的思维逻辑 (45) - 神奇的堆
3小于父节点8,不满足最小堆的性质,所以与父节点交换,会变为:

计算机程序的思维逻辑 (45) - 神奇的堆
交换后,3还是小于父节点6,所以继续交换,会变为:

计算机程序的思维逻辑 (45) - 神奇的堆
交换后,3还是小于父节点,也是根节点4,继续交换,变为:

计算机程序的思维逻辑 (45) - 神奇的堆
这时,调整就结束了,树保持了堆的性质。

从以上过程可以看出,添加一个元素,需要比较和交换的次数最多为树的高度,即log2(N),N为节点数。

这种自低向上比较、交换,使得树重新满足堆的性质的过程,我们称之为siftup。

从头部删除元素

(编辑:云计算网_泰州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读