加入收藏 | 设为首页 | 会员中心 | 我要投稿 云计算网_泰州站长网 (http://www.0523zz.com/)- 视觉智能、AI应用、CDN、行业物联网、智能数字人!
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

2019机器学习框架之争:与Tensorflow竞争白热化,进击的PyTorch赢在哪里?

发布时间:2019-10-12 05:19:39 所属栏目:经验 来源:thegradient 编译:张大笔茹、曹培信、刘俊寰、牛婉
导读:副标题#e# 大数据文摘出品 来源:thegradient 编译:张大笔茹、曹培信、刘俊寰、牛婉扬、Andy 2019年,机器学习框架之争进入了新阶段:PyTorch与TensorFlow成为最后两大玩家,PyTorch占据学术界领军地位,TensorFlow在工业界力量依然强大,两个框架都在向对

例如,根据2018年到2019年的数据,TensorFlow在招聘的页面上有1541个新工作岗位,而PyTorch有1437个,TensorFlow在Medium上有3230个新文章,而PyTorch有1200篇,TensorFlow在GitHub有13.7K标星,而PyTorch有7.2K。

那为什么PyTorch现在已经如此受研究人员欢迎了,但它在工业上还没有同样的成功呢?

显而易见的第一个答案就是使用习惯。TensorFlow比PyTorch早几年问世,而产业接受新技术的速度要比研究人员慢。

另一个原因就是TensorFlow在产业适应方面优于PyTorch,什么意思呢?要回答这个问题,我们需要知道研究人员和工业界的需求有何不同。

研究人员关心的是他们在研究中迭代的速度有多快,这通常是在相对较小的数据集(可以在一台机器上运行的数据集)上,并在8个GPU上就可以运行。这通常不是出于对性能的考虑,而是更关注可以快速实现自己的想法。

而工业界则认为性能是最优先考虑的。虽然运行时速度提高10%对研究人员来意义不大,但这可以直接为公司节省数百万美元。

(编辑:云计算网_泰州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读