加入收藏 | 设为首页 | 会员中心 | 我要投稿 云计算网_泰州站长网 (http://www.0523zz.com/)- 视觉智能、AI应用、CDN、行业物联网、智能数字人!
当前位置: 首页 > 综合聚焦 > 创业热点 > 点评 > 正文

代码不再重要,未来我们要像训狗一样训练计算机

发布时间:2016-05-19 15:21:55 所属栏目:点评 来源:钛媒体
导读:即使我们终究没法完全弄懂机器是如何“思考”的,并不意味着我们在它们面前无能为力。未来,我们将不再关注行为背后的底层代码,而是专注于行为本身,用于训练机器的数据

但是,这就是问题所在:工程师们永远也无法确切搞清楚计算机是如何通过机器学习完成任务的。神经网络的运行很大程度上是不透明的,难以捉摸。换句话说,这是个黑箱。这些黑箱正在日益接管我们的数字生活。不仅在改变我们与科技的关系——还在改变我们对于自我、世界以及人类在世界中的位置的认识。

过去,程序员就像是上帝,制定计算机系统运行的律法;现在,他们变成了计算机的父母或训狗师。无论是父母还是训狗师都会告诉你,这是一种更为神秘的关系。 Android的联合发明人Andy Rubin是个积习成癖的发明家和程序员,硅谷人尽皆知他的办公室和家中到处都是机器人,他亲自给它们编程。“我很小的时候就对电脑科学着了迷,因为在计算机的世界我可以忘记自己。它是一块干净的石板,一块空白的画布,我可以从无到有地创造。“他说,”多年以来,我对这个自己乐在其中的世界全权掌控。”

如今,这个世界已经走到了尽头。Rubin为机器学习的崛起而激动欢呼——他的新公司Playground Global专门投资机器学习领域的创业公司,在智能设备的普及浪潮中保持领先,但这也会让他感到些许难过。因为机器学习改变了工程师存在的意义。

人工智能 大数据 谷歌 代码

用于语音识别的听觉模拟神经网络

“人们不会再逐行写代码了,当一个神经网络学会了语音识别,程序员并不能深入内部去看看这是怎么发生的,就像你无法切开大脑看看自己在想什么。”Rubin说。当程序员窥视深度神经网络的内部,他们看到的只是一团迷雾:海量多层次的微积分问题——由数十亿个数据点持续不断产生的连接——产生着对世界的猜想。

这并不是人们想象中的人工智能的运行方式。直到数年之前,主流的人工智能研究者还以为只要为一台机器灌输正确的逻辑,就能创造智能。只要编写足够多的规则,我们最终就能创造一套精密到可以理解世界的系统。早期的机器学习拥护者被忽视甚至遭到诋毁,他们更倾向于给电脑提供足够多的数据,让它们自己得出结论。多年之间,计算机的运算能力都不足以证明这种方法的价值,所以争论变成了一场哲学思辨。

“大部分争论都建立在关于世界运行与大脑运转的顽固信仰上,”Google无人驾驶汽车之父、斯坦福人工智能教授Sebastian Thru说。“神经网络没有符号,也没有规则,只有数字,这让很多人望之却步。”

一种无法解析的机器语言带来的不仅是哲学观念上的冲击。过去20年间,学习编程已经成为一条无比坚实可靠的职业道路。但是一个由彼此神经连接的深度学习机器主宰的世界需要另一种劳动者。关于人工智能令各种技能过时的担忧已经甚嚣尘上,程序员很快就能尝到自己酿下的“苦果”的滋味。

“我今天早上刚刚和别人谈过这个话题。”当我问到这种转变时,科技名流Tim O’Reilly 说。“当这一代的孩子成长起来,编程工作将会和今天的大为不同。”

当然,传统的编程并不会彻底消失——O’Reilly预计很长一段时间内我们还是需要程序员——但是数量将大为减少,而且编程将会变成一种“元技能(meta skill)”,一种为机器学习创造“脚手架”的手段。就像量子力学的发现并未让牛顿力学失效,编程依旧是探索世界的一种有力工具。但是要快速推进特定的功能,机器学习将接管大部分工作。

当然,还是要有人来训练这些系统。但是,至少在今天,这还是一种稀缺的技能。这种工作需要对数学有高层次的领悟,同时对于“有来有往”的教学技巧有一种直觉。“使这些系统达到最优效果的方法差不多是一门艺术”,Google  Deepmind团队负责人Demis Hassabis说。“世界上只有寥寥数百人能出色地完成这件事。”

但即使是这一小撮人也足够在数年之间改变整个科技行业。

不管这样的转变对于人类职业有何影响,它对文化造成的冲击将会更大。人工编程软件的兴起引发了对于程序员的宗教式崇拜,一种观念大行其道:人类的经验最终可以浓缩成一系列可以理解的指令。而如今,机器学习把钟摆拨向了相反的方向。宇宙运行的“代码”可能在人们的理解之外。比如, Google在欧洲正面临反托拉斯调查,被指控对搜索结果施加过度影响。这项指控很难被证明,因为就连Google自己的工程师都没法说清楚搜索算法是如何工作的。

这早已不是新鲜事,即使是简单的算法也会产生意想不到的新行为——这种观念可以追溯到噪音理论和随机数生成器。在过去几年间,随着计算网络日益交织,功能日趋复杂,程序变得越来越像一股外星力量,机器中的幽灵变得越发难以捉摸、不受控制。飞机无故着陆,股市出现看似不可避免的极速暴跌,还有轮流停电事故。

这些“看不见的力量”让科学家Danny Hillis公开宣称文明时代——我们数百年来对于逻辑、决定论、人定胜天的信仰——的终结。“随着我们创造的技术和机构日益复杂,我们和它们之间的关系已经改变,不再是它们的主人,而要学着跟它们讨价还价,劝诱、指引它们达成我们的目标。机器学习的崛起是这段旅程的最新一章,也可能是最后一章。”

人工智能 大数据 谷歌 代码

Google图片将两名黑人的照片识别为“大猩猩”

后果可能会相当恐怖。毕竟,编程技能还是普通人可以学习和掌握的。程序员毕竟还是人类。如今,技术精英群体的规模正在缩小,他们下达的指令正在不断减少,越来越间接。那些制造出这些东西的公司发现它们的行为很难控制。去年, Google的图片识别引擎开始把黑人打上大猩猩的标签,它不得不紧急道歉,补救措施的第一步是阻止系统为任何东西贴上大猩猩的标签。

(编辑:云计算网_泰州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读